قوانين مساحة المثلث
في الهندسة الرياضية، تعطى مساحة المثلث بالقانون:
المساحة = ½ القاعدة × الارتفاع
يقصد بالقاعدة أحد أضلاع المثلث و يقصد بالارتفاع العمود النازل من الرأس على القاعدة أو على امتدادها.
لاثبات ما سبق يحول المثلث إلى متوازي أضلاع مساحته ضعف مساحة المثلث،
و بعدها يحول إلى مستطيل طوله قاعدة المثلث و عرضه ارتفاع المثلث.
و من هذا القانون تستنتج قوانين مساحة المثلث الأخرى.
قوانين المساحة للمثلث
القانون الأول
يربط بين مساحة المثلث و جيب إحدى زواياه.
في المثلث ABC: القطعة المستقيمة AN ارتفاع و a,b,c أطوال أضلاع المثلث.
المثلث ANC مثلث قائم في N:
(جيب الزاوية يساوي المقابل على الوتر في المثلث القائم)
القانون الثاني
يوضح علاقة مساحة المثلث بنصف قطر الدائرة المحيطة به R.
البرهان:
باستخدام قانون الجيوب:
القانون الثالث
يربط بين مساحة المثلث و نصف قطر الدائرة الداخلية r و نصف المحيط s.
البرهان:
P مركز الدائرة الداخلية للمثلث
باستخدام "المساحة = ½ القاعدة × الارتفاع" ثلاث مرات:
القانون الرابع
يعرف بصيغة هيرو:
القانون الخامس
يعرف بصيغة جيوشاو:
اقرأ أيضاً
وصلات خارجية
ملف:Nuvola apps edu mathematics-ar.svg | بوابة رياضيات تصفح مقالات ويكيبيديا المهتمة بالرياضيات. |
Triangle#Computing_the_area_of_a_triangle]]