نظرية المخططات

(بالتحويل من مخطط (رياضيات))
ملف:6n-graf.svg
رسم لمخطط بستة رؤوس مرتبطة بدون اتجاهات

في الرياضيات وعلوم الحاسب، تقوم نظرية المخططات بدراسة خواص المخططات. يمكن اعتبار المخطط مجموعة كائنات objects تدعى رؤوس vertices مفردها رأس vertex، ترتبط ببعضها بأضلاع edge أو تدعى أحيانا أقواس arcs يمكن أن تكون موجهة أي مزودة باتجاه أو بدون اتجاه. التمثيل لهذا المخطط يكون على الورق بمجموعة نقاط تمثل الرؤوس متصلة بخطوط هي حروف المخطط.

تمكن الاستعانة بالمخططات لحل الكثير من المشاكل العملية، فمثلا بنية موسوعة ويكيبيديا يمكن تمثيلها بمخطط رؤوسه هي أسماء المقالات ونقوم برسم خط موجه بين مقالتين من أ إلى ب إذا كانت المقالة أ تحوي رابطا إلى المقالة ب. تطبيقات هذه النظرية واسعة جدا ولحل مشاكلها يستخدم الحاسوب بشكل واسع لذلك تهتم علوم الحاسوب بتصميم خوارزميات لنظرية المخططات.

تاريخ

ملف:Konigsberg bridges.png
مسألة جسور كونيغسبرغ السبعة.

يعد البحث الذي كتبه ليونهارد أويلر ونشره في عام 1736 حول موضوع جسور كونيغسبرغ السبعة أول بحث في التاريخ في نظرية المخططات[١]. هذا البحث بالإضافة إلى المقالة التي كتبها فانديرموند عن مسألة الفارس، بالإضافة إلى العمل الذي قام به غوتفريد لايبنتز في وضع علاقات لعدد الرؤوس بالأضلاع وأوجه متعددات السطوح المحدبة تعتبر بدايات لعلم الطوبولوجيا.

تعاريف

هناك نوعان من المخططات: مخطط موجه ومخطط غير موجه، وفي الحالتين معا, المخطط هو زوج لمجموعتين (S,A)حيث S مجموعة غير فارغة تمثل قمم المخطط :

  1. إذا كان المخطط موجه فإن A جزء من الجداء الديكارتي: S×S
    المجموعة A تسمى مجموعة أقواس المخطط
  2. إذا كان المخطط غير موجه فإن A هي مجموعة جزء من مجموعة زوج S.

A تسمى مجموعة حروف المخطط.

تعاريف إضافية

الارتباط والجوار

إذا كانت قمتين من مخطط مرتبطتان بحرف, نقول أنهما متجاورتان أو مرتبطتان.

مربع مخطط

مربع مخطط هو مخطط له نفس قمم المخطط الأول وله نفس الحروف أو الأقواس بالإضافة إلى وجود حروف أو أقواس تربط بين القمم التي لها جوارات مشتركة.

سلاسل وسبل

السلسلة أو السبيل هو جزء من مخطط يربط بين قمتين بواسطة أزواج قمم مرتبط مثنى مثنى على التوالي.

الدرجة

في المخطط العادي درجة قمة هو عدد الحروف المرتبطة بالقمة.

في المخطط الموجه هناك نوعان درجة الدخول وهي عدد الأقواس المتجهة من قمم أخرى إلى القمة, في حين درجة الخروج هي عدد الأقواس المنطلقة من القمة.

البئر

البئر هو قمة في مخطط موجه درجة خروجه منعدم.

المنبع

المنبع هو قمة في مخطط موجه درجة دخوله منعدم.

مخطط عكسي

المخطط العكسي لمخطط هو مخطط له نفس القمم مرتبطة إذا لم تكن مرتبطة في المخطط الأصلي.

مسار ومسار مغلق

المسار هو سلسلة رؤوس مرتبطة, لها بداية ونهاية (نقطة انطلاق ونقطة وصول).

إذا كانت نقطتي الانطلاق والوصول منطبقتين, المسار يكون مغلقا.

مسار أولير

مسار أولير لمخطط G غير موجه هو مسار يمر بكل الحروف مرة واحدة فقط.

نقول أن المخطط متصل إذا كان يحتوي على مسار أولير, وكل رؤوسه من درجة مزدوجة

مسار هاميلتون

مسار هاميلتون لمخطط G هو مسار يمر بكل القمم مرة واحدة فقط.

مخطط كامل

المخطط الكامل هو مخطط بسيط يكون كل زوج من رؤوسه متصلان بضلع. بحيث أن المخطط الكامل ذو n رأس يكون له n(n-1)/2 ضلع.

مخطط مستقر

المخطط المستقر هو مخطط ليس له حروف.

مخطط مستو

المخطط المستوي هو مخطط يمكن تمثيله بكيفية لا تتقاطع الحروف فيه.

مخطط قوي التوصيل

مخطط يمكن الوصول فيه من أي عقدة إلى أي عقدة أخرى.

تمثيلات

كل مخطط يضم مجموعة قمم يمكن تمثيلها على شكل دوائر، إذا كان المخطط موجه يتم تمتيل كل قوس بسهم، وبخط في حالة مخطط عادي.

مسائل

  1. مشكلة الرحالة التاجر
  2. مشكلة تلوين المخطط
  3. تساوي شكلي مخططين

انظر أيضا

مراجع

  1. ^ Biggs, N.; Lloyd, E. and Wilson, R. (1986). Graph Theory, 1736-1936. Oxford University Press. 
ملف:Nuvola apps edu mathematics-ar.svg بوابة رياضيات تصفح مقالات ويكيبيديا المهتمة بالرياضيات.