مسألة نهاية سعيدة
في الرياضيات، مسألة النهاية السعيدة سميت بهذا الاسم من قبل بول إيردوس لأنها أدت إلى زواج جورج سيكيرس من إيستير كلاين. ونص المسألة هو على الشكل التالي:
أي مجموعة من خمس نقاط في المستوي في مواضع عامة تحوي على مجموعة جزئية من أربع نقاط تشكل رؤوس مضلع محدب.
مراجع
- Chung, F.R.K.; Graham, R.L. (1998). "Forced convex n-gons in the plane". Discrete and Computational Geometry 19: 367–371. doi: .
- Erdős, P.; Szekeres, G. (1935). "A combinatorial problem in geometry". Compositio Math 2: 463–470.
- Erdős, P.; Szekeres, G. (1961). "On some extremum problems in elementary geometry". Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 3–4: 53–62.
- Harborth, Heiko (1978). "Konvexe Fünfecke in ebenen Punktmengen". Elem. Math. 33 (5): 116–118.
- Horton, J. D. (1983). "Sets with no empty convex 7-gons". Canad. Math. Bull. 26 (4): 482–484.
- Kalbfleisch J.D.; Kalbfleisch J.G.; Stanton R.G. (1970). "A combinatorial problem on convex regions". Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La., Congr. Numer. 1: 180–188.
- Kleitman, D.J.; Pachter, L. (1998). "Finding convex sets among points in the plane". Discrete and Computational Geometry 19: 405–410. doi: .
- Morris, W.; Soltan, V. (2000). "The Erdős-Szekeres problem on points in convex position—A survey". Bulletin of the American Mathematical Society 37: 437–458. doi: .
- Nicolás, C. M. (2007). "The Empty Hexagon Theorem". Discrete and Computational Geometry 38: 389–397. doi: .
- Overmars, M. (2003). "Finding sets of points without empty convex 6-gons". Discrete and Computational Geometry 29: 153–158. doi: .
- Peterson, Ivars (2000). "Planes of Budapest". MAA Online.
- Scheinerman, Edward R.; Wilf, Herbert S. (1994), "The rectilinear crossing number of a complete graph and Sylvester's "four point problem" of geometric probability", American Mathematical Monthly 101 (10): 939–943, doi:10.2307/2975158
- Szekeres, G.; Peters, L. (2006). "Computer solution to the 17-point Erdős-Szekeres problem". ANZIAM Journal 48: 151–164.
- Tóth G.; Valtr, P. (1998). "Note on the Erdős-Szekeres theorem". Discrete and Computational Geometry 19: 457–459. doi: .
- Tóth G.; Valtr, P.(2005). "The Erdős-Szekeres theorem: upper bounds and related results".Combinatorial and computational geometry: 557–568, Mathematical Sciences Research Institute Publications, no. 52.
- Valtr, P. (2006). On the empty hexagons.
ملف:Nuvola apps edu mathematics-ar.svg | بوابة رياضيات تصفح مقالات ويكيبيديا المهتمة بالرياضيات. |
Happy Ending problem]] es:Problema del final feliz fi:Erdősin-Szekeresin konjektuuri hu:Happy End-probléma th:ปัญหาแฮปปี้เอ็นดิ้ง zh:幸福結局問題